Solutions to Question Sheet 8, Differentiation III. v1 2019-20

Taylor Polynomials

If f has n derivatives at $a \in \mathbb{R}$ then

$$
T_{n, a} f(x)=\sum_{r=0}^{n} \frac{f^{(r)}(a)}{r!}(x-a)^{r} .
$$

There are four questions asking you to calculating Taylor polynomials and they all highlight a method that should simplify the work needed and cut down the opportunity of making an error.

1. Calculate the Taylor polynomial

$$
T_{6,0}\left(\frac{\sin x+\cos x}{1+x}\right)
$$

Hint Multiply up so you don't have to differentiate rational functions.

Solution Let

$$
f(x)=\frac{\sin x+\cos x}{1+x} .
$$

We don't like fractions so multiply up and consider

$$
(1+x) f(x)=\sin x+\cos x .
$$

We will differentiate this repeatedly to get

$$
\begin{aligned}
(1+x) f^{(1)}(x)+f(x) & =\cos x-\sin x \\
(1+x) f^{(2)}(x)+2 f^{(1)}(x) & =-\sin x-\cos x \\
(1+x) f^{(3)}(x)+3 f^{(2)}(x) & =-\cos x+\sin x \\
(1+x) f^{(4)}(x)+4 f^{(3)}(x) & =\sin x+\cos x \\
(1+x) f^{(5)}(x)+5 f^{(4)}(x) & =\cos x-\sin x \\
(1+x) f^{(6)}(x)+6 f^{(5)}(x) & =-\sin x-\cos x .
\end{aligned}
$$

Put $x=0$ to get

$$
\begin{aligned}
f(0) & =1 \\
f^{(1)}(0)+f(0) & =1 \\
f^{(2)}(0)+2 f^{(1)}(0) & =-1 \\
f^{(3)}(0)+3 f^{(2)}(0) & =-1 \\
f^{(4)}(0)+4 f^{(3)}(0) & =1 \\
f^{(5)}(0)+5 f^{(4)}(0) & =1 \\
f^{(6)}(0)+6 f^{(5)}(0) & =-1 .
\end{aligned}
$$

Solving these we find $f(0)=1, f^{(1)}(0)=0, f^{(2)}(0)=-1, f^{(3)}(0)=2$, $f^{(4)}(0)=-7, f^{(5)}(0)=36$ and $f^{(6)}(0)=-217$.

Hence

$$
\begin{aligned}
T_{6,0}\left(\frac{\sin x+\cos x}{1+x}\right) & =1+0 x-\frac{x^{2}}{2!}+2 \frac{x^{3}}{3!}-7 \frac{x^{4}}{4!}+36 \frac{x^{5}}{5!}-217 \frac{x^{6}}{6!} \\
& =1-\frac{x^{2}}{2!}+2 \frac{x^{3}}{3!}-7 \frac{x^{4}}{4!}+36 \frac{x^{5}}{5!}-217 \frac{x^{6}}{6!} .
\end{aligned}
$$

2. Calculate the Taylor polynomial

$$
T_{8,0}(\sin x \cosh x) .
$$

Hint Look for a pattern in your derivatives. For the trigonometric functions $\sin x$ and $\cos x$ you return to a function related to the original function after differentiation at most 4 times. For hyperbolic functions it is after 2 differentiations. Thus for f that are products of such functions you might hope to see some connection between f and $f^{(4)}$.

Solution Let $f(x)=\sin x \cosh x$. Then

$$
\begin{aligned}
f^{(1)}(x)= & \cos x \cosh x+\sin x \sinh x, \\
f^{(2)}(x)= & -\sin x \cosh x+\cos x \sinh x \\
& +\cos x \sinh x+\sin x \cosh x \\
= & 2 \cos x \sinh x \\
f^{(3)}(x)= & -2 \sin x \sinh x+2 \cos x \cosh x, \\
f^{(4)}(x)= & -2 \cos x \sinh x-2 \sin x \cosh x \\
& -2 \sin x \cosh x+2 \cos x \sinh x \\
= & -4 \sin x \cosh x=-4 f(x) .
\end{aligned}
$$

From $f^{(4)}(x)=-4 f(x)$ we quickly get

$$
\begin{aligned}
f^{(5)}(x) & =-4 f^{(1)}(x) \\
f^{(6)}(x) & =-4 f^{(2)}(x) \\
f^{(7)}(x) & =-4 f^{(3)}(x) \\
f^{(8)}(x) & =-4 f^{(4)}(x)=16 f(x) .
\end{aligned}
$$

Hence $f(0)=0, f^{(1)}(0)=1, f^{(2)}(0)=0, f^{(3)}(0)=2, f^{(4)}(0)=0$, $f^{(5)}(0)=-4, f^{(6)}(0)=0, f^{(7)}(0)=-8$ and $f^{(8)}(0)=0$. Thus

$$
\begin{aligned}
T_{8,0}(\sin x \cosh x) & =0+1 x+0 x^{2}+\frac{1}{3} x^{3}+0 x^{4}-\frac{1}{30} x^{5}+0 x^{6}-\frac{1}{630} x^{7}+0 x^{8} \\
& =x+\frac{1}{3} x^{3}-\frac{1}{30} x^{5}-\frac{1}{630} x^{7}
\end{aligned}
$$

3. Calculate the Taylor polynomial

$$
T_{5,0}\left(e^{\sin x}\right)
$$

Hint Let $f(x)=e^{\sin x}$ and, because of the exponential function satisfies $d e^{x} / d x=e^{x}$, look for a connection between f and $f^{(1)}$.

Solution Let $f(x)=e^{\sin x}$. Then by the Composition Rule for differentiation

$$
f^{(1)}(x)=e^{\sin x} \cos x=f(x) \cos x .
$$

Thus

$$
\begin{aligned}
f^{(2)}(x)= & f^{(1)}(x) \cos x-f(x) \sin x, \\
f^{(3)}(x)= & f^{(2)}(x) \cos x-f^{(1)}(x) \sin x-f^{(1)}(x) \sin x-f(x) \cos x \\
= & f^{(2)}(x) \cos x-2 f^{(1)}(x) \sin x-f(x) \cos x, \\
f^{(4)}(x)= & f^{(3)}(x) \cos x-f^{(2)}(x) \sin x-2 f^{(2)}(x) \sin x \\
& -2 f^{(1)}(x) \cos x-f^{(1)}(x) \cos x+f(x) \sin x \\
= & f^{(3)}(x) \cos x-3 f^{(2)}(x) \sin x-3 f^{(1)}(x) \cos x+f(x) \sin x
\end{aligned}
$$

Hopefully you can see a pattern (reminiscent of the Binomial Theorem?) and the next in the list will be
$f^{(5)}(x)=f^{(4)}(x) \cos x-4 f^{(3)}(x) \sin x-6 f^{(2)}(x) \cos x+4 f^{(1)}(x) \sin x+f(x) \cos x$.
Putting $x=0$ and we find $f(0)=1, f^{\prime}(0)=1$ and

$$
\begin{aligned}
f^{(2)}(0) & =f^{(1)}(0)=1 \\
f^{(3)}(0) & =f^{(2)}(0)-f(0)=0 \\
f^{(4)}(0) & =f^{(3)}(0)-3 f^{(1)}(0)=-3, \\
f^{(5)}(0) & =f^{(4)}(0)-6 f^{(2)}(0)+f(0)=-3-6+1=-8 .
\end{aligned}
$$

Thus

$$
T_{5,0}\left(e^{\sin x}\right)=1+x+\frac{x^{2}}{2}-\frac{x^{4}}{8}-\frac{x^{5}}{15}
$$

4. Calculate the Taylor Polynomial

$$
T_{4,0}\left(\frac{\ln (1+x)}{1+x}\right) .
$$

Hint Again look at multiplying up and writing a derivative in terms of earlier derivatives.

Solution Let

$$
f(x)=\frac{\ln (1+x)}{1+x}
$$

Follow the hint and write $(1+x) f(x)=\ln (1+x)$. Then, taking the derivative,

$$
f(x)+(1+x) f^{(1)}(x)=\frac{1}{1+x}
$$

Follow the hint yet again, and multiply up as

$$
(1+x) f(x)+(1+x)^{2} f^{(1)}(x)=1
$$

Repeated differentiation gives

$$
\begin{array}{r}
f(x)+3(1+x) f^{(1)}(x)+(1+x)^{2} f^{(2)}(x)=0 \\
4 f^{(1)}(x)+5(1+x) f^{(2)}(x)+(1+x)^{2} f^{(3)}(x)=0 \\
9 f^{(2)}(x)+7(1+x) f^{(3)}(x)+(1+x)^{2} f^{(4)}(x)=0
\end{array}
$$

Substituting $x=0$ gives

$$
\begin{aligned}
f(0)+f^{(1)}(0) & =1, \\
f(0)+3 f^{(1)}(0)+f^{(2)}(0) & =0, \\
4 f^{(1)}(0)+5 f^{(2)}(0)+f^{(3)}(0) & =0, \\
9 f^{(2)}(0)+7 f^{(3)}(0)+f^{(4)}(0) & =0 .
\end{aligned}
$$

Starting with $f(0)=0$ we get $f^{(1)}(0)=1, f^{(2)}(0)=-3, f^{(3)}(0)=$ $-4+15=11$ and $f^{(4)}(0)=27-77=-50$.

Hence

$$
\begin{aligned}
T_{4,0}\left(\frac{\ln (1+x)}{1+x}\right) & =0+x-3 \frac{x^{2}}{2!}+11 \frac{x^{3}}{3!}-50 \frac{x^{4}}{4!} \\
& =x-\frac{3}{2} x^{2}+\frac{11}{6} x^{3}-\frac{25}{12} x^{4}
\end{aligned}
$$

Error Terms

The Remainder or Error Term in approximating a function by it's Taylor Polynomial is given by

$$
R_{n, a} f(x)=f(x)-T_{n, a} f(x) .
$$

In the notes we give bounds on $R_{n, a} f(x)$ which thus tell us how well $T_{n, a} f(x)$ approximates $f(x)$. This is the subject of the next three questions. But we can also deduce something from knowing that $R_{n, a} f(x)$ is of constant sign as x varies; we get inequalities between $f(x)$ and $T_{n, a} f(x)$.
5. i. Prove that

$$
\begin{equation*}
\left|\sin x-x+\frac{x^{3}}{6}\right| \leq \frac{1}{4!}|x|^{4} \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}$.
Hint the left hand side is $\left|R_{3,0}(\sin x)\right|$.
ii. Deduce (without L'Hôpital's Rule) that

$$
\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}=-\frac{1}{6} .
$$

Solution i. It is easy to check that

$$
T_{3,0}(\sin x)=x-\frac{x^{3}}{3!}
$$

so

$$
\sin x-x+\frac{x^{3}}{3!}=\sin x-T_{3,0}(\sin x)=R_{3,0}(\sin x)
$$

Let $f(x)=\sin x$, then Lagrange's form of the error gives

$$
R_{3,0}(\sin x)=\frac{f^{(4)}(c)}{4!} x^{4}
$$

for some c between x and 0 . Yet $\left|f^{(4)}(c)\right|=|\sin c| \leq 1$, giving the stated resultm (1).
ii. Dividing through the stated result by $|x|^{3}$ gives

$$
\left|\frac{\sin x-x}{x^{3}}+\frac{1}{3!}\right| \leq \frac{1}{4!}|x|
$$

Let $x \rightarrow 0$ and we get

$$
\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}=-\frac{1}{6},
$$

by quoting the Sandwich Rule.
6. For $f(x)=\ln (1+x)$, find the Taylor polynomial $T_{5,0} f(x)$ and calculate $T_{5,0} f(0.2)$.

Use Lagrange's form of the error for the remainder to estimate the error in using $T_{5,0} f(0.2)$ to calculate $\ln 1.2$.

Hence show that

$$
0.18232000 \ldots<\ln 1.2<0.18232709 \ldots
$$

Solution Repeated differentiation gives us

$$
\begin{array}{cl}
f(x)=\ln (1+x), & f(0)=0, \\
f^{(1)}(x)=\frac{1}{1+x}, & f^{(1)}(0)=1, \\
f^{(2)}(x)=-\frac{1}{(1+x)^{2}}, & f^{(2)}(0)=-1, \\
f^{(3)}(x)=\frac{2}{(1+x)^{3}}, & f^{(3)}(0)=2, \\
f^{(4)}(x)=-\frac{6}{(1+x)^{4}}, & f^{(4)}(0)=-6, \\
f^{(5)}(x)=\frac{24}{(1+x)^{5}}, & f^{(5)}(0)=24 .
\end{array}
$$

Thus

$$
T_{5,0} f(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}
$$

The approximation to $f(0.2)=\ln 1.2$ given by this polynomial is

$$
\begin{aligned}
T_{5,0} f(0.2) & =0.2-\frac{(0.2)^{2}}{2}+\frac{(0.2)^{3}}{3}-\frac{(0.2)^{4}}{4}+\frac{(0.2)^{5}}{5} \\
& =0.18233066 \ldots
\end{aligned}
$$

Also $f^{(6)}(x)=-5!/(1+x)^{6}$ and so Lagrange's form of the error is

$$
R_{5,0} f(x)=\frac{-x^{6}}{6(1+c)^{6}},
$$

for some c between 0 and x. With $x=0.2$ then $1 / 1.2<1 /(1+c)<1$ and thus

$$
-\frac{(0.2)^{6}}{6}<R_{5,0} f(0.2)<-\frac{(0.2)^{6}}{6(1.2)^{6}}
$$

That is,

$$
-0.00001066 \ldots<\ln 1.2-T_{5,0} f(0.2)<-0.0000035722 \ldots
$$

Hence

$$
0.18232000 \ldots<\ln 1.2<0.18232709 \ldots .
$$

In fact $\ln 1.2=0182321556 \ldots$.
7. Use Taylor's Theorem with $f(x)=\sqrt{x}$ on $[64,66]$ and $n=1$ along with Lagrange's form of the error to show that

$$
\frac{1}{8}-\frac{1}{1024}<\sqrt{66}-8<\frac{1}{8}-\frac{1}{1458}
$$

Solution With $f(x)=\sqrt{x}, n=1, a=64$ and Lagrange's form of the error, Taylor's Theorem states

$$
R_{1,64} f(x)=\frac{f^{(2)}(c)}{2!}(x-64)^{2}
$$

for some c between 64 and x. That is

$$
f(x)-T_{1,64} f(x)=\frac{f^{(2)}(c)}{2!}(x-64)^{2},
$$

or

$$
f(x)=f(64)+f^{(1)}(64)(x-64)+\frac{f^{(2)}(c)}{2!}(x-64)^{2} .
$$

With $f(x)=\sqrt{x}$ we get

$$
\sqrt{x}=\sqrt{64}+\frac{(x-64)}{2 \sqrt{64}}-\frac{(x-64)^{2}}{8 c^{3 / 2}} .
$$

Take $x=66$ when $64<c<66$ and

$$
\sqrt{66}-\sqrt{64}=\frac{(66-64)}{2 \sqrt{64}}-\frac{(66-64)^{2}}{8 c^{3 / 2}}=\frac{1}{8}-\frac{1}{2 c^{3 / 2}}
$$

To simplify matters think of c as lying between 64 and 81 (the smallest square larger than 66), so

$$
\frac{1}{1458}<\frac{1}{2 c^{3 / 2}}<\frac{1}{1024}
$$

Thus

$$
\frac{1}{8}-\frac{1}{1024}<\sqrt{66}-\sqrt{64}<\frac{1}{8}-\frac{1}{1458}
$$

In fact,

$$
\sqrt{66}-8=\frac{1}{8}-\frac{1}{1039.938 \ldots}
$$

Taylor Series

8. Calculate the Taylor Series for $x \cosh x+\sinh x$ with $a=0$.

Solution i) Let $f(x)=x \cosh x+\sinh x$. Then

$$
\begin{aligned}
f^{(1)}(x) & =x \sinh x+2 \cosh x \\
f^{(2)}(x) & =x \cosh x+3 \sinh x \\
f^{(3)}(x) & =x \sinh x+4 \cosh x \\
f^{(4)}(x) & =x \cosh x+5 \sinh x \\
f^{(5)}(x) & =x \sinh x+6 \cosh x
\end{aligned}
$$

The pattern is

$$
f^{(r)}(x)= \begin{cases}x \sinh x+(r+1) \cosh x & \text { if } r \text { is odd } \\ x \cosh x+(r+1) \sinh x & \text { if } r \text { is even. }\end{cases}
$$

Thus

$$
f^{(r)}(0)= \begin{cases}(r+1) & \text { if } r \text { is odd } \\ 0 & \text { if } r \text { is even }\end{cases}
$$

Hence the Taylor Series for $x \cosh x+\sinh x$ with $a=0$ is

$$
\sum_{r=0}^{\infty} f^{(r)}(0) \frac{x^{r}}{r!}=\sum_{\substack{r=0 \\ r \text { odd }}}^{\infty}(r+1) \frac{x^{r}}{r!}=\sum_{n=0}^{\infty} \frac{2(n+1)}{(2 n+1)!} x^{2 n+1}
$$

The first few terms are

$$
2 x+\frac{2}{3} x^{3}+\frac{1}{20} x^{5}+\frac{1}{630} x^{7}+\frac{1}{36288} x^{9}+\ldots
$$

9. Prove that the Taylor series for cosine converges to $\cos x$, i.e.

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots=\sum_{r=0}^{\infty} \frac{(-1)^{r} x^{2 r}}{(2 r)!},
$$

for all $x \in \mathbb{R}$.
Solution Let $f(x)=\cos x$. Let $x \in \mathbb{R}$ be given. Then for $n \geq 1$

$$
R_{n, 0}(\cos x)=\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}
$$

for some c between x and 0 . Yet $\left|f^{(n+1)}(c)\right|$ is either $|\sin c|$ or $|\cos c|$, both of which are ≤ 1. Thus

$$
\left|R_{n, 0}(\cos x)\right| \leq \frac{|x|^{n+1}}{(n+1)!} \rightarrow 0
$$

as $n \rightarrow \infty$, since $\left\{|x|^{n+1} /(n+1)!\right\}_{n \geq 1}$ is a null sequence. Hence $R_{n, 0}(\cos x) \rightarrow 0$ as $n \rightarrow \infty$ and so the Taylor series for cosine converges to $\cos x$ for all $x \in \mathbb{R}$.

Additional Questions

10. Assume the function f is $n+1$ times differentiable with $f^{(n+1)}$ continuous on an open interval containing $a \in \mathbb{R}$. Prove that

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f(x)-T_{n, a} f(x)}{(x-a)^{n}}=0 \quad \text { and } \quad \lim _{x \rightarrow a} \frac{f(x)-T_{n, a} f(x)}{(x-a)^{n+1}}=\frac{f^{(n+1)}(a)}{(n+1)!} . \tag{2}
\end{equation*}
$$

Hint Consider Lagrange's error.
Note these limits in special cases have been seen many times before.
(a) $f(x)=\sin x$ with $T_{2,0}(\sin x)=x$ is the subject of Question 5 ,
(b) $f(x)=e^{x}$ with $T_{3,0}\left(e^{x}\right)=1+x+x^{2} / 2$ is the subject of Question 9 on Sheet 3 .
(c) $f(x)=\sinh x$ with $T_{2,0}(\sinh x)=x$ is the subject of the same question. To check that earlier answer

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sinh x-x}{x^{3}} & =\lim _{x \rightarrow 0} \frac{\sinh x-T_{2,0}(\sinh x)}{x^{3}} \\
& =\left.\frac{1}{3!} \frac{d^{3}}{d x^{3}}(\sinh x)\right|_{x=0} \quad \text { by }(2) \\
& =\frac{1}{6} .
\end{aligned}
$$

Solution For x lying in the interval around a in which f has $n+1$ derivatives Lagrange's error states that

$$
f(x)-T_{n, a} f(x)=R_{n, a} f(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

for some c lying between a and x. Therefore, for $x \neq a$,

$$
\begin{equation*}
\frac{f(x)-T_{n, a} f(x)}{(x-a)^{n+1}}=\frac{f^{(n+1)}(c)}{(n+1)!} . \tag{3}
\end{equation*}
$$

Let $x \rightarrow a$. Since c lies between a and x we also have $c \rightarrow a$. We are assuming $f^{(n+1)}$ is continuous at a so $\lim _{c \rightarrow a} f^{(n+1)}(c)=f^{(n+1)}(a)$. Hence

$$
\lim _{x \rightarrow a} \frac{f(x)-T_{n, a} f(x)}{(x-a)^{n+1}}=\frac{f^{(n+1)}(a)}{(n+1)!} .
$$

Then, rearranging (3),

$$
\frac{f(x)-T_{n, a} f(x)}{(x-a)^{n}}=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a) \rightarrow 0
$$

as $x \rightarrow a$, having used the Product Rule for limits, allowable since each individual limit exists.
11. i. Prove that $x^{n+1} R_{n, 0}\left(e^{x}\right) \geq 0$ for all $x \in \mathbb{R}$.

Deduce that for all $m \geq 1$ we have

$$
e^{x} \geq T_{2 m-1,0}\left(e^{x}\right)
$$

for all $x \in \mathbb{R}$, while

$$
\begin{cases}e^{x} \geq T_{2 m, 0}\left(e^{x}\right) & \text { for } x>0 \\ e^{x} \leq T_{2 m, 0}\left(e^{x}\right) & \text { for } x<0\end{cases}
$$

Note this answers a question in the printed lecture notes, of showing that

$$
e^{x} \geq 1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}
$$

for all $x \in \mathbb{R}$ while

$$
e^{x}>1+x+\frac{x^{2}}{2} \text { if } x>0 \quad \text { and } \quad e^{x}<1+x+\frac{x^{2}}{2} \text { if } x<0 .
$$

ii. Prove that $(-1)^{n} x^{n+1} R_{n, 0}(\ln (1+x)) \geq 0$ for all $x>-1$.

Deduce that for all $n \geq 1$,

$$
\ln (1+x) \leq T_{n, 0}(\ln (1+x))
$$

for $-1<x<0$ while if $x>0$ then

$$
\begin{cases}\ln (1+x) \leq T_{n, 0}(\ln (1+x)) & \text { for odd } n \\ \ln (1+x) \geq T_{n, 0}(\ln (1+x)) & \text { for even } n\end{cases}
$$

Note These last results for $x>0$ can be combined in

$$
T_{2 m, 0}(\ln (1+x)) \leq \ln (1+x) \leq T_{2 m+1,0}(\ln (1+x))
$$

for all $m \geq 1$. The case $m=1$ is the content of Question 6, Sheet 7 .
Solution i. For all $x \in \mathbb{R}$ there exists, by Lagrange's form of the error term, some c between 0 and x such that

$$
R_{n, 0}\left(e^{x}\right)=\frac{e^{c}}{(n+1)!} x^{n+1}
$$

Then

$$
\begin{equation*}
x^{n+1} R_{n, 0}\left(e^{x}\right)=\frac{e^{c}}{(n+1)!}\left(x^{2}\right)^{n+1} \geq 0 \tag{4}
\end{equation*}
$$

for all $x \in \mathbb{R}$, since $e^{c}>0$ for all c.
There are two cases.
If \mathbf{n} is odd then $n+1$ is even so $x^{n+1} \geq 0$ for all x. Thus, by (4), $R_{n, 0}\left(e^{x}\right) \geq 0$. Writing $n=2 m-1$ this implies $e^{x} \geq T_{2 m-1,0}\left(e^{x}\right)$ for all $x \in \mathbb{R}$.

If \mathbf{n} is even then $x^{n+1} \geq 0$ for all $x>0$ and $x^{n+1} \leq 0$ for all $x<0$. Thus, by (4), $R_{n, 0}\left(e^{x}\right) \geq 0$ if $x>0$ and $R_{n, 0}\left(e^{x}\right) \leq 0$ if $x<0$. Writing $n=2 m$ this implies $e^{x} \geq T_{2 m, 0}\left(e^{x}\right)$ for $x>0$ and $e^{x} \leq T_{2 m, 0}\left(e^{x}\right)$ for $x<0$.
ii. For all $x \in \mathbb{R}$ there exists, by Lagrange's form of the error term, some c between 0 and x such that

$$
R_{n, 0}(\ln (1+x))=\frac{(-1)^{n} x^{n+1}}{(n+1)(1+c)^{n+1}}
$$

Then

$$
\begin{equation*}
(-1)^{n} x^{n+1} R_{n, 0}(\ln (1+x))=\frac{\left(x^{2}\right)^{n+1}}{(n+1)(1+c)^{n+1}} \geq 0 \tag{5}
\end{equation*}
$$

for all $x>-1$, since $1+c>0$ for $c>x>-1$..
There are two cases.
If \mathbf{n} is odd then (5) implies $x^{n+1} R_{n, 0}(\ln (1+x)) \leq 0$ for $x>-1$. Again $x^{n+1} \geq 0$ for all x so $R_{n, 0}(\ln (1+x)) \leq 0$ for $x>-1$.

Writing $n=2 m-1$ this implies

$$
\ln (1+x) \leq T_{2 m-1,0}(\ln (1+x))
$$

for $x>-1$.
If \mathbf{n} is even then (5) implies $x^{n+1} R_{n, 0}(\ln (1+x)) \geq 0$. As in Part i, $x^{n+1} \geq 0$ for all $x>0$ and $x^{n+1} \leq 0$ for all $-1<x<0$. Writing $n=2 m$ these imply

$$
\begin{aligned}
& R_{2 m, 0}(\ln (1+x)) \geq 0 \text { for } x>0 \\
& R_{2 m, 0}(\ln (1+x)) \leq 0 \text { for }-1<x<0
\end{aligned}
$$

That is,

$$
\ln (1+x) \geq T_{2 m-1,0}(\ln (1+x))
$$

for $x>0$ and

$$
\ln (1+x) \leq T_{2 m-1,0}(\ln (1+x))
$$

for $-1<x<0$. These results can be combined in the way described in the question.

